그리하면 그가 세상을 창조할 때부터 자주 고난을 받아야 할 것이로되 이제 자기를 단번에 제사로 드려 죄를 없게 하시려고 세상 끝에 나타나셨느니라 [히 9:26]
창조의 신비
성경과 기독교
노아의 홍수
생명복제와 UFO
천문학
물리학 수학 환경
지질학
화석
진화론
진화론의 주장
창조론
연대문제
압도적인 노아 홍수
의 지질학적 증거들
사람과 공룡이 함께
살았다는 증거들
부정되고 있는 수십
억년의 지구연대
정확무오한 하나님의
말씀인 성경
만물에 깃든 창조주
의 능력과 신성
진화를 부정하는
살아있는 화석들
진화론의 허구적
증거와 주장
첫 방문자를 위한
창조과학 추천자료
ICR
AiG
Impact Article
CMI
Creation Magazine
Encyclopedia
Technical Journal
CEH
Headlines
CRSQ
Omniology
CSC
Bible.ca
RAE
 
노아의 홍수 HOME > 자료실 > 노아의 홍수
대륙 지표면의 침식은 노아 홍수/홍수 후 경계를
신생대 후기로 위치시킨다.
(Surficial continental erosion places the Flood/post-Flood
boundary in the late Cenozoic)
Michael J. Oard

   대륙 지표면에 발생해있는 막대한 침식은 창세기 홍수(Genesis Flood)에 대한 실제적인 물리적 증거를 제공한다. 대륙 지표면의 침식을 측정하는 4가지의 직접적인 방법을 사용하여, 콜로라도 고원, 애팔래치아 산맥, 로키 산맥과 같은, 대륙의 일부 지역에서 막대한 양의 침식을 측정하게 되었다. 로키 산맥의 계곡 및 분지를 채웠던 퇴적암의 상층부의 막대한 침식(와이오밍에서 850m, 콜로라도에서 1,520m, 뉴멕시코에서 1,000m)이 입증되었다. 대륙에서 침식된 퇴적물 파편들은 대륙주변부(continental margin)의 두터운 퇴적암을 형성했다. 이러한 지형적 특성은 독특하며, 대규모의 지질학적 과정을 가리키고 있다. 더 중요한 것은, 이 침식은 지질주상도 상에서 신생대 중기에서 후기에 발생했다는 것이다. 이것은 홍수/홍수 후 경계(Flood/post-Flood boundary)가 신생대 후기, 자주 신생대 후기 말임을 강하게 가리키는 것이다.

------------------------------------------------------------------

    노아 홍수에 있어서, 홍수/홍수 후 경계는 관심 있는 주제이다. 그것은 암석기록에서 나타나있는 홍수와 홍수 후 사건들의 범위와 시기를 정하는 것과 관련되어 있다. 많은 창조론자들은 지질주상도(geological column)를 오래된 연대만 빼고, 성경적 지구 역사의 순서를 나타내는 것으로 믿고 있기 때문에, 나는 이 글에서 논의를 위해, 지질주상도의 일반적인 순서를 가정할 것이다.[1] 나는 지질주상도가 많은 예외들을 가진, 전 지구적 홍수 시에 퇴적된 일반적인 순서를 나타낸다는 것을 받아들인다.

홍수가 대륙에서 물러갔다는, 그리고 홍수/홍수 후 경계가 지질주상도의 상단에 위치한다는 가장 강력한 증거 중 하나는, 대륙 표면에서 관측되고 있는 막대한 양의 침식과 그 특성이다.

이전에 발표됐던 14개의 판정기준(criteria)은 홍수/홍수 후 경계가 신생대 후기(late Cenozoic)임을 가리킨다.[2] 이어진 글에서, 퇴적암 및 지형학의 9개 사례를 통해서, 이러한 판정기준 중 일부를 강조했다.[3] 신생대 후기가 경계임을 보여주는 더 많은 판정기준들이 있다. 신생대 후기는 지질주상도 상에서, 제3기의 중신세(Miocene), 선신세(Pliocene)와, 제4기(Quaternary)에서 홍적세(Pleistocene)에 해당될 수 있다. 모든 층서학적 위치들은 자체 장점에 대해 평가될 필요가 있다고 생각한다. 그 결과 나는 홍수/홍수 후 경계가 여러 지역에서, 홍적세 중기(mid Pleistocene)일 것이라고 결론지었다. 그러나 다른 지역에서는, 그 경계가 중신세 또는 선신세일 수 있다는 증거들을 발견했다. 우리는 정확성을 높이기 위해, 신생대 후기의 방사성 동위원소 연대, 또는 생물층서학적 연대를 사용하지 않았다. 왜냐하면 그러한 연대들은 신뢰할 수 없기 때문이다.

홍수가 대륙에서 물러갔다는, 그리고 홍수/홍수 후 경계가 지질주상도의 상단에 위치한다는 가장 강력한 증거 중 하나는, 대륙 표면에서 관측되고 있는 막대한 양의 침식과 그 특성이다.  이 침식의 성격은 현장 데이터로부터 사례별로 해석되어야만 한다. 그러나 각 지역에서 측정된 침식의 량은, 더 넓은 지역으로 외삽될 수 있다.


그림 1. 스팀보트 록(Steamboat Rock)은 미졸라 호수의 홍수(Lake Missoula flood) 시에, 그랜드 쿨리가 급속하게 침식하는 동안 형성됐던, 275m 높이의 수직 벽을 가지고 있는 침식 잔재물이다.


대륙의 지표면 침식을 평가하는 방법

한 지역의 침식된 량을 측정하는 데에는 여러 방법들이 있다. 그 중 일부는 방사성 동위원소 연대측정에 의존하는, 가령 화학적 및 우주기원 동위원소 측정법과 같은 간접적 방법들이다. 이 방법들은 동일과정설적 가정에 기초하기 때문에, 보다 과학적인 방법들을 사용할 것이다.

그랜드 계단(Grand Staircase, 거대한 지층 계단)과 론앤북 절벽(Roan and Book Cliffs)에서 콜로라도 고원에 대한 지질학적 단서들을 기초로 추정하면, 콜로라도 고원 전체에서 평균 2,500~5,000m의 침식이 발생했다!

침식 량을 추정하는 첫 번째 방법으로, 최소 침식 값(erosional values)을 측정하는 것이다. 침식 량은 도상구릉(inselbergs. 또한 monadnocks, bornhardts로 불리기도 하고, 석회암 지형에서는 tower karst라고도 함)으로 불리는, 침식 잔재물(erosional remnants)의 높이로부터 결정될 수 있다.[4] 예로, 미국 와이오밍 북동부의 데블스타워(Devils Tower, 악마의 탑)과 호주 중부의 에어즈 록(Ayers Rock, 울루루)같은 것들이다. 지구상에 수천 개의 이러한 침식 잔재물들이 남아 있다. 미국 워싱턴주 중부의 그랜드 쿨리(Grand Coulee) 상류에 있는, 약 300m의 높은 절벽을 가진 커다란 침식 잔재물인 스팀보트 록(Steamboat Rock)(그림 1)은, 빙하기의 정점에 있었던 미졸라 호수(Lake Missoula)의 격변적 붕괴로 인한 홍수로 급격히 만들어졌다.[5] 따라서 격변적 홍수는 그들 주위의 모든 암석들을 침식시켜서, 이러한 침식 잔재물을 만들어놓았던 것이다. 침식 잔재물은 종종 퇴적암이고, 정상부 암석도 단단하지 않기 때문에, 그 위에 놓여있던, 압착과 석회화에 필요했던, 300m의 또 다른 지층암석들이 침식됐다고 추정해도, 비합리적인 것이 아니다. 이러한 추정치는 너무 불확실하기 때문에, 단지 침식 잔재물의 꼭대기 높이까지만 침식 량을 평가하는 데에 사용될 것이며, 따라서 여기에서 제시된 침식 량은 최소값이 될 수 있을 것이다.

두 번째 방법은 배사구조(anticline)로부터 추정하는 것이다. 배사구조는 일반적으로 위쪽으로 볼록하게 습곡되어 있고, 중심부에는 오래된 지층들이 놓여있는 구조이다.[6] 배사구조의 중심축이 침식되면, 잃어버린 부분의 침식 량은 양쪽으로 뻗어있는 지층 기울기로부터 계산될 수 있다. 배사구조의 정상부 위로 동일한 두께의 지층들이 침식됐다고 가정하고 말이다. 그림 2는 홍수 기간 동안 배사구조가 융기했고, 이어서 침식된 모습을 가설적으로 보여준다. 배사구조의 중심에서 잃어버린(침식된) 부분은 삼각법을 사용하면 비교적 쉽게 계산할 수 있다. 지층이 비교적 얇다면, 계산은 비교적 정확하게 추정될 수 있다. 융기와 침식 이전에 배사구조 위로 추가적인 지층이 있었다면, 계산된 추정치는 아마도 최소치가 될 것이다.


그림 2. 홍수에 의한 배사구조(anticline)의 급격한 침식의 개략도.

세 번째 방법은 지표나 지표 근처의 석탄의 등급(rank)을 조사하는 것이다. 석탄의 형성은 주로 온도와 관련이 있는데, 온도가 높을수록 등급이 높아진다. 즉, 낮은 온도에서는 갈탄(lignite)이 만들어지며, 온도가 상승함에 따라 역청탄(bituminous coal), 무연탄(anthracite coal)이 만들어진다. 온도는 식물의 매몰 깊이에 비례하기 때문에, 등급이 높은 석탄은 매몰 깊이가 더 깊었음을 의미하므로, 등급이 높은 석탄이 지표면에 있다는 것은, 그 만큼 침식이 많이 일어났었다는 것을 의미한다. 온도 외의 요인들로 인해 계산이 복잡하기는 하지만, 석탄의 등급으로부터 경험적 추론이 가능하다. 지표면이나 지표면 가까이에 역청탄이나 무연탄이 있다는 것은 과거에 수천 m 지하였다는 것을 의미한다.  

대륙적 스케일로 침식의 규모를 결정하는 네 번째 방법은 대륙붕, 대륙사면, 수동적 대륙주변부, 대륙의 융기 등을 포함하여, 대륙주변부(continental margins)의 퇴적암의 부피를 측정해보는 것이다. 대륙주변부의 배수 지역들에서 퇴적물의 량이 평가될 수 있다면, 대략적인 침식의 총량을 추정해볼 수 있다.  


대륙에 발생되어 있는 대규모의 침식

대륙의 침식에는 (작은 기간이 사이에 있었던) 두 주요 시기가 있었다. 첫 번째는 그랜드 캐니언에서 볼 수 있는 대부정합(Great Unconformity)을 형성했던, 대부분의 화강암 상부 지각에 발생되어 있는 엄청난 침식이 있었던 시기이다. 이 부정합은 북미 대륙 서부의 다른 많은 지역과, 아마도 전 세계에서 관측된다. 두터운 퇴적지층들이 이 부정합 위로 쌓여진 후, 퇴적물은 침식되었고(예로 융기된 산악 지역), 평탄면을 만들면서, 평탄한 또는 거의 평탄한 지표면을 노출시켰다.

두 번째 주요 침식 시기는 실제적으로 모든 퇴적지층들이 대륙에 쌓여진 후에 발생했으며, 그 후 극도로 엄청난 량의 지층암석 부피가 연속적으로 침식되었다. 지형학은 지표면 침식이 두 가지 방식 중 하나로 발생했음을 가리킨다. 첫 번째는 광범위한 판상 침식(sheet erosion)에 의한 것이고, 두 번째는 판상 침식 이후에 연이어 발생한, 수로화 된 침식(channelized erosion)에 의한 것이었다. 여러 지역의 판상 침식 사례들은 대륙에서 일어난 지표면 침식의 총량을 평가할 수 있게 해준다.


그림 3. 미국 남서부, 샌 라파엘 스웰(San Rafael Swell)의 콜로라도 고원은 타원으로 표시됐다. 그리고 배사구조의 침식 량을 평가하기 위한 위치는 남북 선으로 가리켜지고 있다.


콜로라도 고원

콜로라도 고원의 두터운 퇴적암은 대개 돔과 분지(domes and basins, 배사구조와 향사구조, anticlines and synclines)로 가볍게 변형되어 있다.(그림 3) 돔은 심하게 침식되었다. 두께와 각도를 직접 측정하여, 이 침식 량을 평가할 수 있다.

그림 4. 그랜드 계단(Grand Staircase). (미국 북부 애리조나 주, 그랜드 캐니언 북쪽의 카이밥 고원에서 북쪽으로 바라본 모습)

그랜드 계단(Grand Staircase, 거대한 지층 계단)은 콜로라도 고원 서부의 한 부분으로(그림 4), 그림 3에서 북- 남 선으로 표시되어 있다. 한때 그랜드 캐니언 근처에 중심부가 있었던, 거대한 동서 배사구조의 북쪽 가지는 침식된 것으로 나타난다. 그랜드 계단에서 절벽을 형성하고 있는 퇴적암은 두께가 약 3,000m이다. 그들은 한때 먼 남쪽까지 확장되어 있던, 지층의 침식 잔재물이다. 일정한 두께를 가정하는 것은 지나치게 관대할 수 있으므로, 우리는 침식되어 잃어버린 퇴적지층이 남쪽으로 약 40% 가늘어졌다고 가정할 것이다. 이 추정치에 기초하여, 그랜드 계단을 만들었던 최소 침식 량은 1,830m의 두께가 될 것이다. 더군다나, 북쪽의 그랜드 계단을 덮고 있는 600m 두께의 메리스베일 화산지대(Marysvale Volcanic Field)가 남쪽에도 있었다면, 최소 두께는 2,430m에 이른다. 따라서 그랜드 캐니언이 형성되기 이전에, 그랜드 캐니언 지역에서는 두께 2,430m에서 3,600m의 지층암석이 침식됐음이 추정된다!

그랜드 계단의 최상층인 클래론 지층(Claron Formation, 종종 와사치 지층(Wasatch Formation)으로 잘못 여겨짐)은 신생대 초기로 연대가 평가되고 있다. 메리스베일 화산지대는 신생대 중기에서 신생대 후기 초반으로 평가되고 있다.[7] 이 암석들은 모두 침식되기 전에 놓여졌어야만 했기 때문에, 애리조나 북부와 유타 남부의 이들 암석의 판상 침식은 신생대 후기에 발생했음에 틀림없다. 그 지역에서 홍수/홍수 후의 경계는 신생대 후기 말로 주장될 수 있다.

이 침식은 그랜드 캐니언 지역의 평탄면(planation surface)을 만들었다(그림 6). 이러한 스케일의 평탄면은 오늘날 형성되지 않는다. 이 침식에 기인한 평탄면은 또한 신생대 후기에 형성되었다.

침식이 기계적으로 계산될 수 있는 콜로라도 고원의 또 다른 위치는, 그림 3에서 타원으로 표시된 콜로라도 고원 북서부의 샌 라파엘 스웰(San Rafael Swell) 지역이다. 그 지역은 약 65km에서 120km 이다.[8] 유타주 프라이스 북부의 샌 라파엘 스웰의 북쪽 가지의 퇴적지층은 론앤북 절벽(Roan and Book Cliffs)을 구성하고, 북-북동쪽으로 약 8° 정도 기울어졌다. 오드와 클레브버그(Oard and Klevberg)는 퇴적암이 평탄해지기 시작하는 유타주 프라이스(Price, Utah) 위로 잃어버린 지층 침식의 량을 계산했다.[9] 온건하게 6°의 기울기를 포함하여, 잃어버린 단면의 침식 량은 3,660~4,575m로 계산되었다. 그 숫자는 더 클 가능성이 있다. 191번 고속도로의 하이패스 북쪽의, 상부 지층의 침식 잔재물인, 그린리버 지층(Green River Formation)은 600m 높이이다. 이것은 한때 또 다른 약 600m의 퇴적암이 배사구조 위로 확장되어 있었음을 가리킨다. 따라서, 샌 라파엘 스웰의 최소 총 침식량은 4,200~5,100m이다! (그림 7)

그림 5. 그랜드 계단의 다섯 번째 계단인 클래론 지층 위 북쪽으로 아쿠아리우스 고원(Aquarius Plateau).(화살표). (미국 유타 남중부의 브라이스 캐니언 국립공원에서 북동쪽으로 바라본 전망).

그랜드 계단과 론앤북 절벽에서 콜로라도 고원에 대한 지질학 단서들을 기초로 하여, 평균 2,500~5,000m 두께의 침식이 콜로라도 고원 전체에서 발생했다![10] 콜로라도 고원은 약 337,000km2의 면적을 차지하기 때문에, 침식으로 제거된 지층암석의 부피는 무려 842,000~1,700,000km3의 막대한 량이다. 이 퇴적물들은 대륙에서 발견되지 않기 때문에, 대륙 밖으로 완전히 옮겨졌음에 틀림없고, 거대한 스케일의 고속의 물 흐름을 가리킨다. 이것은 홍수의 후퇴기(Recessional Stage)와 완전히 일치한다. 이 글의 목적으로 돌아가서, 다시 한번 콜로라도 고원의 홍수/홍수 후 경계는 신생대 후기 말에 위치한다.


애팔래치아 산맥

미국 동부의 애팔래치아 산맥(Appalachian Mountains)은 오랜 기간의 침식으로 낡아진 모습을 갖고 있다고 말해지고 있다. 파자글리아와 가드너(Pazzaglia and Gardner)는 산맥으로부터의 침식 총량을 추정하여 정량화했다. 그들은 7km 이상 두께의 지층암석이 제거되었다고 주장했다.[11] 동일과정설 지질학에서 애팔래치아 산맥은 수억 년 동안 침식이 일어나, 매끄러운 산이 됐다고 가정한다. 애팔래치아 산맥의 둥근 모습은 그 산맥이 엄청난 나이를 갖고 있는듯한 인상을 준다. 애팔래치아 지역은 고생대로 추정되고 있기 때문에, 동부 해안의 사라진 지층의 연대에서 보여지는 것처럼, 침식은 그 후인 중생대 중기와 신생대에 발생한 것으로 추정되고 있다.[12] 그러나 침식은 퇴적암의 꼭대기도 제거해버렸기 때문에, 침식은 홍수가 끝날 무렵에 일어났음에 틀림없다. 그렇다면 추정되는 침식 량은 유효할까? 두 가지의 다른 방법으로 약 6.4km의 동일한 결과를 얻었다![13]

침식 량을 추정하는 첫 번째 방법은, 지표면 또는 지표면 근처에서 석탄의 등급(coal rank)을 측정하는 것이다. 석탄은 블루리지 산맥(Blue Ridge Mountains)의 서쪽에 있는 퇴적지층에서 흔하다.[14] 석탄은 높은 등급의 무연탄에서 중간 등급의 역청탄까지 다양하며, 일반적으로 남동쪽으로 가면서 등급이 증가한다.[14] 프리드먼과 샌더스(Friedman and Sanders)는 뉴욕 캐츠킬 산맥(Catskill Mountains)의 무연탄은 정상적 온도 기울기(temperature gradient)를 가정할 때, 약 6.4km의 침식이 있었음을 나타냈다고 밝혔다.[15] 만약 그들의 추정이 맞는다면, 블루리지 산맥의 서쪽에 있는 퇴적암 지대의 표면 근처에서 발견되는 무연탄에도 그들의 주장이 적용될 수 있다. 온도 기울기가 높을수록, 위로 놓여진 지층 부하는 적게 되고, 결과적으로 침식 량은 적어진다.[14] 또한 역청탄을 가지고 있는 지역은 지층 부하가 적을 것이다. 이들 지역에서, 침식된 지층 두께를 4.0~6.4km로 추정하는 것은 합리적일 것이다.

그림 6. 미국 애리조나 북부의 그랜드 캐니언의 평탄면(planation surface) (레드 뷰트(Red Butte) 정상에서 북쪽으로 바라본 전망).

두 번째 방법은 대륙주변부에서 발견되는 퇴적암의 양이다. 애팔래치아 산맥의 동쪽, 특히 남부 지역은 변성암과 화성암으로 유명하다. 멀리 동쪽으로, 퇴적물 쐐기(sedimentary wedge) 구조는 대륙주변부 퇴적물의 서쪽 말단을 표시해준다. 이 쐐기의 경계는 종종 폭포선(Fall Line)에서 발생해있다. 폭포선에서 대륙의 상승까지의 퇴적암은, 퇴적물과 퇴적암의 바다방향으로의 진전과 두꺼워진 쐐기를 나타낸다.[16, 17] 이 퇴적물과 암석들은 아마도 노아 홍수 후반기의 수직적 구조 운동의[4] 결과로 인한, 높은 고도의 애팔래치아 산맥의 침식 잔재물일 가능성이 높다. 수직적 구조 운동은 전 세계의 지형으로부터 추론되고 있는 것으로, 성경에도 기술되어있는데[18], 대륙의 융기와 대양저의 침강을 일으켰다. 앞바다의 퇴적암 총량에 기초하여, 애팔래치아 산맥 분할 동쪽의 침식된 총량은 약 6km 두께 였다.[13]

포아그와 세본(Poag and Sevon)은 말했다 : ”주요한 동력이 된 메커니즘은 구조 운동적이며, 지각 평형적이었던 융기와 침강이었다.”[19] 미국 동부의 구조적 융기(tectonic uplift)는 침식을 유발한 원인으로 믿어진다. 반면에, 대륙주변부를 따라 연안에 가라앉은 퇴적물의 총량으로 적합시켜보면, 14km의 침식이 추정된다.[12, 18] 이러한 말은 홍수 물을 배수시키기 위해서, 하나님께서 사용하신 메커니즘으로, 시편 104:8절을 상기시켜 준다. ”산은 오르고, 골짜기는 내려갔나이다”. 지각평형적 융기(isostatic uplift)는 퇴적지층들의 제거로 야기된, 이차적 구조적 힘이었다. 반대로, 퇴적물의 추가는 해양 가장자리의 갈라짐과 하향요곡을 야기시킨 이차적 메커니즘이기도 하다.

그림 7. 샌 라파엘 스웰(San Rafael Swell)의 침식됐을 것으로 추정하는 북쪽 지층들. 미국 유타주 프라이스(Price) 지역 위로 4,200~5,100m의 침식을 보여준다. 물음표가 있는 점선은 두께의 변화는 없었다고 가정하고, 샌 라파엘 스웰까지 퇴적지층이 있었을 것으로 외삽한 것이다.


침식은 빨랐다.

미국 서부의 여러 지역은 침식이 빨랐으며, 최근에 일어난 것임을 입증하고 있다. 예를 들어, 주변의 모든 평원이 침식되어 사라지고 남아있는, 데블스타워(Devils Tower, 악마의 탑)는 수백만 년 동안 계속 서있을 수 없다.[20] 수직 암벽은 중력에 의해 강한 영향을 받아, 암석들은 흘러내리고 떨어지기 때문에, 더 쉽게 침식된다.[21, 22] 더군다나 데블스타워의 광범위한 수직 균열들은 동결-해빙의 풍화작용에 의해서 쉽게 파괴되는 경향이 있다. 암석 틈 사이로 빗물이 들어가고, 추운 날씨에 얼어버리면, 균열은 커진다. 매 겨울마다 바위 덩어리들이 자주 떨어지고 무너지는 것이 예상되고, 실제로 그러한 일은 오늘날 관측되고 있다 :

1954년 11월에 데블스타워 가까이에 살았는데, 밤에 동결작용이 일어나는 동안 돌이나 바위 덩어리들이 테일러스(talus, 절벽 기슭이나 산 사면에 쌓여있는 절벽에서 떨어져 나온 모난 암석의 집합체)에 떨어져 부딪히는 소리를 들을 수 있었다. 이러한 일은 대개 눈이 온 후에 일어난다... 해가 비치는 따뜻한 날 눈이 녹아서 물기가 데블스타워의 절리(節理; 암석의 갈라진 틈. 수직 틈새)에 들어간다. 어두워진 후, 물이 얼어서 팽창하여, 지속적으로 데블스타워로부터 바위덩어리가 떨어져 나와, 테일러스에 돌들은 점점 더 많아지는 것이다.[23]     

데블스타워는 수만 년 만에, 확실히 10만 년 이내에, 빠르게 파괴되어 사라질 것이다.

동일과정설적 지질학자들은 그랜드 캐니언 지역은 그랜드 계단(Grand Staircase)을 만들었던 그레이트 삭박(Great Denudation) 동안, 수백만 년에 걸쳐서 물에 의해 침식되었다고 믿고 있다. 그러나 창세기 대홍수의 물러가던 홍수 물에서 예상되는 것처럼, 그레이트 삭박은 느리지 않았고, 매우 빨랐음을 가리키는, 강력한 지표들이 있다. 이 증거는 그랜드 계단의 다섯 번째 '계단'의 꼭대기에서 침식된 암석 유형에서 주로 발견된다. 부드러운 클래론 지층(핑크 절벽, Pink Cliffs)은 상층부 또는 다섯 번째 계단을 이루고 있다. 그러나 한때 화산암이 그것을 덮었다. 화산암은 다섯 번째 계단의 북쪽 부분에서 노출되어 보여진다.(그림 5) 크릭메이(Crickmay)는 테이블 클리프 고원(Table Cliffs Plateau) 북부의 정상부에서 북쪽으로 침식된 600m 두께의 화산암과, 고원의 정상부를 이루고 있는 침식되기 쉬운 부드러운 클래론 지층(Claron Formation) 사이의 당황스러운 침식 관계를 기술하고 있었다 :

”예를 들어, 유타주의 고원들에서 고지대 표면을 보호하는 것보다 관광객들에게 큰 인상을 주는 것은 없다. 특히, 남아있는 수직적 연속 층들이 그렇다. 가장 높은 고원 중 하나가 약 600m의 저항성 화산암이 정상부에 형성되어 있는 아쿠아리우스 고원(Aquarius Plateau)이다. 그러나 이 화산암 바로 아래에는, 테이블 클리프 고원(Table Cliffs Plateau)이 튀어나와 있는데, 이 고원은 침식되기 쉬운 클래론 지층(Claron Formation)으로 이루어져 있다. 여기에서는 저항성이 강한 화산암의 뚜껑이 벗겨져 있는 것이다. 그럼에도 불구하고 저항성이 없는 지층이 고원 형태를 유지하고 있다. 반면에 주변 지역은 광대한 면적에 걸쳐서, 또 다시 1,200m 또는 그 이상으로 낮아지고 있다.”[24]

그림 8. 유타주 남중부의 그랜드 계단(Grand Staircase)의 침식을 보여주는 그림. 테이블 클리프 고원(Table Cliffs Plateau) 위쪽으로 600m 두께의 화산암이 북쪽으로 침식되었고, 그 밑의 부드러운 클래론 지층(Claron Formation)에는 하향적 침식이 거의 일어나있지 않다. 이러한 지형이 발생되어 있을 수 있는 유일한 방법은, 화산암의 침식이 빠르게 일어나는 것이었다. 이것은 그랜드 계단(Grand Staircase)이 빠르게 침식되었음을 의미한다.

크릭메이가 말했던 것을 세밀히 살펴보면, 아쿠아리우스 고원의 단단한 화산암이 먼저 침식되고, 부드러운 클래론 지층이 드러난 것을 볼 수 있다. 그런 다음 테이블 클리프 고원의 클래론 지층이 남쪽으로 약 1,200m의 지층이 침식되어, 그랜드 계단의 다른 계단을 형성했다. 이 모든 시간 동안, 테이블 클리프 고원을 이루고 있는 부드러운 클래론 지층은 거의 침식이 일어나지 않았다!

만약 수백 수천만 년에 걸쳐서 침식이 일어났었다면, 부드러운 클래론 지층은 용암 뚜껑이 제거된 후에 쉽게 침식되었을 것이다. 또한, 높은 고도에 있는 테이블 클리프 고원의 침식은 더 빨랐을 것이다. 왜냐하면 일반적으로 높은 고지대는 더 많은 강수량을 갖고 있기 때문이다. 그림 8은 크릭메이가 기술한 것처럼 침식의 거대한 대조를 보여준다. 화산암이 침식된 후에, 부드러운 클래론 지층의 정상부는 침식되지 않고 남아있었다. 이것이 일어날 수 있는 유일한 방법은, 화산암의 침식이 동일과정설 지질학자들이 생각하는 것처럼, 수백 수천만 년 동안에 천천히 일어난 것이 아니라, 비교적 최근에 빠르게 일어났을 때뿐이다. 이것은 전체 그랜드 계단이 빠르게 침식되었음을 의미하며, 이것은 홍수의 후퇴기와 일치한다.
 
침식이 빠르게 일어났다는 또 다른 증거는 그랜드 캐니언 지역에서도 발견된다. 유타/애리조나 경계 근처의 나바호 산(Navajo Mountain)은 그랜드 캐니언의 북동쪽으로 약 130km 떨어져 있다. 그 산은 해발 3,166m 이고, 퇴적암 내에서 형성된 화산 덩어리이다. 오늘날 그 산은 주변 퇴적암보다 1,830m 위로 솟아 있다. 따라서 데빌스타워와 유사하게, 1,830m의 퇴적지층이 전체 지역에서 빠르게 침식되었음에 틀림없다. 그렇지 않다면, 나바호 산은 존재하지 않았을 것이다. 왜냐하면 산들은 대체로 수평적인 지표면보다 훨씬 빠르게 침식되기 때문이다.


대륙 침식의 다른 사례

북미 대륙의 다른 지역에서도 마찬가지로 막대한 침식 현상이 발생해있다. 신생대 동안 애리조나 남부에서는 1.6km 이상의 지층암석이 침식되었다.[25] 신생대 후기에 로키산맥, 산기슭, 캐나다 남부의 서부 평원에서 수 km 두께의 지층이 침식으로 사라졌다.[26, 27]

북미 대륙은 이러한 막대한 침식이 발생해있는 유일한 대륙이 아니다. 대규모의 침식은 다른 대륙들, 특히 산악지역에서 막대하게 일어나있다.[28, 29] 대륙 침식에 대한 많은 추정치들이 지질학적 문헌에서 발견될 수 있지만, 북미 대륙에서 일어난 일만 가지고도, 노아 홍수 말에 어떤 침식이 일어났었는지를 보여주기에 충분할 것이다.

그림 9. 영국 남동부의 융기된 후에 침식된 윌든 돔(Wealden Dome). 돔의 중앙에서 침식된 총 지층 두께는 대략 1,500m이다.

호주의 지질학적 특징을 살펴보면, 호주 대륙도 막대한 침식이 일어나있음을 알 수 있다.[30] 예를 들면 호주 남부의 플린더스 산맥(Flinders Ranges)은 6,000m 정도가 침식되었다.[31, 32] 유럽에서 영국의 웨일즈 산악지역은 3,000m 정도가 침식되었다.[33] 영국 남동부에서는 1,000~1,600m 정도가 침식되었다(그림 9)[34, 35].     

파트리지(Partridge)는 남부 아프리카에서 1,000~3,000m 이상의 지층이 침식되었다고 믿고 있다.[36] 남극대륙의 트랜스앤타크틱 산맥(Transantartic Mountains)의 맥머도(McMurdo) 지역의 해변 260km를 따라 발생되어있는 4,000~7,000m 두께의 침식은 참으로 경이롭다.[37]

대부분의 산들이 (동일과정설 시간 틀로) 신생대 동안에 융기되었기 때문에[38], 이 모든 침식들은 신생대 동안, 대체로 신생대 후기의 중반쯤에 일어났던 것으로 보인다.

 

로키 산맥의 분지와 계곡의 침식

작은 스케일에서도, 로키 산맥의 계곡과 분지에 대대적인 침식이 일어난 여러 사례들을 볼 수 있다. 이 침식은 홍수 후퇴기의 판상 침식 단계 이후와, 수로화 된 침식 단계 이내에서 주로 발생했다. 깊은 골짜기에는 압사로카 화산암이 1,000m 깊이 이상으로 침식되어있고, 이 모든 것은 화산성 암설류(volcanic debris flows)로 쌓여진 상층부가 평탄화 된 후에 발생되었는데, 모두 신생대 중기와 후기에 발생되었다.[3] 같은 방법으로 두터운 퇴적암을 가지고 있는 계곡과 분지에서, 최소 침식량을 평가할 수 있다. 다음의 예는 로키 산맥의 계곡과 분지에서 평가된 것이지만, 전 세계의 다른 분지와 계곡들도 의심​​할 여지없이 비슷한 그림을 보여줄 것으로 추정된다.

앞에서 언급된 처음 두 가지 방법에 기초했던 지질학자들은, 로키 산맥의 계곡 또는 분지를 채우고 있는 퇴적암 상부의 최소 침식량을 결정했다.[39] 와이오밍의 평균 추정치는 850m에 이른다(표 1). 콜로라도에서는 1,520m에 달하고, 뉴멕시코에서는 1,000m에 이른다. 지층들이 대게 평탄한, 미국의 고평원에 대한 침식 추정치들은 다음과 같다 : (1)텍사스 북서부에서 약 180m, (2)콜로라도 남동부에서 180m, (3)캔자스 북서부에서 120m (4)네브라스카 서부에서 400m, (5)사우스 다코타 남서부에서 190m, (6)몬태나 북동부에서 100m 미만... 이것들은 침식 잔재물이 없고, 고평원에서 침식된 배사구조 때문에, 과소평가됐을 가능성이 있다. 다른 많은 지역들과 마찬가지로, 이러한 침식의 대부분은 신생대 후기에 일어났다.


표 1. 미국 와이오밍 주의 계곡과 분지들의 최소 침식량 (단위 : 미터).[39]

오드(Oard)는 이전에 빅혼 분지(Bighorn Basin) 동부의 침식 량을 타트만 산(Tatman Mountain) 및 그레이불(Greybull) 시의 높이를 기준으로 744m로 추정했다.[3] 빅혼분지 서부는 빅혼분지 동부 지역보다 상당히 높았으며(약 1,550m), 이는 표1에서 빅혼분지의 평균이 빅혼분지 동부에 대한 오드의 추정치보다 낮은 이유를 설명해준다. 평균 470m의 침식으로, 빅혼분지에서 침식된 퇴적물의 총량은 약 10,000km3 이다.


대륙의 가장자리에 존재하는 엄청난 판상 퇴적

많은 대륙주변부는 해안의 위 아래로 확장되어있는, 두터운 퇴적물 쐐기(sedimentary wedges)의 자국을 가지고 있다. 우수한 예로는 대서양 해안평야(Atlantic Coastal Plain)와 미국의 멕시코만 해안평야(Gulf Coastal Plain)가 있다. (참조 : 엄청난 량의 워퍼 모래는 전 지구적 홍수를 가리킨다.) 이들 분지와 퇴적물은 비교적 젊으며, 그들의 퇴적물은 대륙 침식에서 파생된 것이었다. 이러한 퇴적물 쐐기의 두께는 수 km에서 10km 이상이 될 수도 있다. 이러한 막대한 량의 퇴적물 총 부피는, 대륙 내부에서 늦게 발생했던 막대한 침식을 가리키는 또 하나의 증거가 되고 있다. 왜냐하면, 이들 퇴적물의 대부분은 신생대로 간주되기 때문이다. 이것들은 홍수/홍수 후 경계를 신생대 후기로 ​​결정하는데 사용됐던 14개의 판정기준 중 하나이다. 이것은 신생대 후기에서도 늦게 일어났을 것이다.[2]


독특한 침식 모습들이 남아 있다.

앞에서 언급했듯이, 전 세계의 지형 모습은 대륙적 규모의 막대한 침식이 일어났었다는 가장 좋은 증거가 되고 있다. 이들 모습들은 그랜드 캐니언과 같은 거대 스케일의 모습을 포함하여, 광대한 평탄면(planation surfaces)에서부터, 수극(water gaps), 풍극(wind gaps)에 이르기까지, 모든 것들이 포함된다.[4] 창조론자들이 활발히 연구해야할 분야 중 하나가 지형학(geomorphology)이다. 1세기 이상 동안 동일과정설 지질학자들을 좌절시켰던, 미스터리 같은 지형 모습들이 전 지구적 홍수 과정으로는 매우 쉽게 설명된다. 이러한 지형 모습들에 대한 일관되게 추정되는 늦은 연대(대부분이 신생대 후기)[2], 홍수를 가리키는 암석기록들은 신생대 후기에 지층암석들의 융기와 침식이 동반됐었다는 신뢰성 높은 결론을 이끌어낸다. 어떤 홍수론자들은 노아 홍수의 시점을, 암석기록에서 아래쪽인 K/T(백악기/제3기) 경계로 두고 있다. 그러나 이것은 홍수 이후의 격변이라는 용어를 사용하여, 이러한 늦게 형성된 지형 모습들을 모두 설명할 수 있어야만 한다. 이것은 매우 어렵고 불필요해 보이는 작업으로 보인다.


요약 및 시사점

홍수/홍수 후의 경계를 결정하는 가장 쉬운 방법 중 하나는, 주어진 지역에서 침식의 연대와 침식의 량을 추정하는 것이다. 직접적인 과학적 방법에 근거하여, 대륙 침식의 량은 매우 막대했으며, 상당히 늦게 발생했다. 계산에 의하면, 콜로라도 고원에서는 5km, 애팔래치아 산맥에서는 6km 두께의 지층암석이 침식되었다. 또한, 대륙에 쌓여있는 퇴적암의 평균 두께가 단지 1.8km라는 것을 고려할 때, 그 크기는 실로 엄청나다. 최소 침식 량은 로키 산맥의 계곡과 분지와 같은 더 작은 스케일에서 산정될 수 있는데, 이곳에서는 약 1,000m의 지층이 침식된 것으로 계산될 수 있다.

어떤 홍수론자들은 노아 홍수의 시점을, 암석기록에서 아래쪽인 K/T(백악기/제3기) 경계로 두고 있다. 그러나 이것은 홍수 이후의 격변이라는 용어를 사용하여, 이러한 늦게 형성된 지형 모습들을 모두 설명할 수 있어야만 한다. 이것은 매우 어렵고 불필요해 보이는 작업으로 보인다.

대륙에서 침식이 일어난 곳마다, 퇴적 입자들은 종종 매우 먼 거리를, 심지어 대륙주변부까지 운반되었다. 대륙의 융기와 해양분지의 침강을 가져온 수직적 구조 운동으로 인해, 거대한 분지들이 만들어졌고, 멕시코 만에서와 같은 퇴적물 쐐기(sedimentary wedges)가 형성되었다. 독특한 지형 모습은 홍수의 후퇴기(Recessional Stage) 동안에 만들어졌으며, 이러한 모습들은 동일과정설 지질학자들에게는 미스터리한 미해결 문제로 남아있지만, 홍수 모델에서는 대규모적 사건으로 쉽게 설명될 수 있다. 그리고 이러한 지형 모습들은 노아 홍수가 끝나고, 그 이후의 격변적 사건으로 설명하기는 어려워 보인다.

지구 표면의 지형학적 특성은 광범위한 판상 흐름(sheet flow)에 의한 침식 모습(평탄면과 같은)에서부터, 수로화 된 흐름(channelized flow)의 침식 모습(수극과 풍극과 같은)에 이르기까지, 지표면 모습의 변화를 보여준다 : ”제3기(Tertiary) 동안에 지형의 광범위한 평탄화 작용에서부터, 제4기(Quaternary) 동안에 계곡의 발달과 절개는 유럽에 잘 기록되어 있다.”[40] 이것은 홍수의 후퇴기 동안에 예상되는 것과 정확히 일치한다. 판상 흐름의 침식에서, 수로화 된 흐름 침식으로의, 이러한 전환은 지형과 위치에 따라 다르지만, 일반적으로 홍수 물이 물러가면서 먼저 노출됐던 고지대 지역에서 더 일찍 발생했다.

이러한 모든 지역적 규모의 지형 모습들이 만들어진 시기가 암석기록에서 늦게 나타난다는 것은 매우 중요하며, 강조되어야만 한다. 지표의 평탄면(아직 파여지지 않은)은 신생대 동안에 형성되기 시작했다. 이것은 ‘초기 후퇴기(Abative Phase)’라 불리는 홍수의 후퇴기 초기의 사건을 나타낸다.[41] 후퇴기의 소멸기(Dispersive Phase) 단계에서 전형적인, 계곡과 협곡들의 파여짐은 나중에 일어났다.[4] 동일과정설 지질학자들은 빙하기에 대한 천문학적 이론을 가정하여, 50번 이상의 빙하기를 가정하고[42], 이러한 모습들을 빙하에 의한 것으로 설명하려고 시도해왔다. 그러나 이러한 개념은 수많은 빙하기들을 가정하고 있으며, 계곡과 적어도 상부 테라스(terraces)는 동일과정설 틀에서 비-빙하기와 관련될 필요가 있다.[43] (*강 테라스(river terraces)에 대한 설명은 성경적 지구 역사 내에서 조사될 필요가 있으며, 이 기사의 범위를 넘어가는 것이다).


그림 10. 대홍수의 후퇴기 동안에 발생했던 막대한 대륙 침식 모형도(drawn by Mrs. Melanie Richard).

실제적으로 대륙의 광대한 지역에서의 지표면 침식은, 로키 산맥의 계곡과 분지를 포함하여, (동일과정설 시간 틀로) 신생대 중기에서 후기에 발생했다. 지표면의 독특한 지형에서 추론되는 것처럼, 이러한 막대한 침식은 노아 홍수 이후의 어떤 격변에 의해서 설명하기는 불가능해 보인다. 그러나 홍수 후퇴기 동안에 그러한 침식이 일어났다는 것은 강력한 증거들에 의해서 지지된다.[41]

노아 홍수/홍수 후 경계가 K/T 경계라고 주장하는 사람들은 신생대에도 거대한 홍수 격변이 있었음을 가정해야만 한다. 그들은 그러한 거대한 스케일의 격변적 침식을 설명할 수 있는 메커니즘을 아직 가정하지 못하고 있다. 그리고 그러한 메커니즘은 여기에서 제안됐던 것보다 더 우수해야만 한다. 이러한 문제점은 홍수/홍수 이후의 경계를 고생대 말, 또는 심지어 선캄브리아기라고(재서식화 모델(Recolonization Model)이라 불림) 주장하는 사람들에게는 매우 크고 치명적인 것이다.[44, 45] 현재까지 가장 좋은 설명은, 로이 홀트(Roy Holt)가 오래 전에 제안했던 것처럼, 노아 홍수의 후퇴기에 대륙에서 물러가던 물에 의해 침식되었다는 설명이다. 그는 홍수 물이 퇴적물과 퇴적지층을 대륙의 꼭대기로부터 벗겨내던 시기를 ‘침생대(Erodozoic)’라는 용어를 만들어 사용하였다.[46]

그림 10은 후퇴하는 홍수 물에 의한 신생대 후기의 침식을 요약한 것이다. 대륙에 쌓여있는 퇴적지층의 두께는 평균 약 1,800m이다.[47] 침식 정도의 평가에 기초하여, 대륙들의 평균적 침식 량은 약 500m 정도이다. 따라서 노아 홍수가 절정에 이르렀을 때, 퇴적지층의 전체 두께는 2,300m에 달했을 것이며, 이들은 홍수 범람기(Inundatory Stage)의 초기에 퇴적되었을 것이다. 이것은 지층암석들이 지구 역사를 통틀어 수많은 사건들의 스냅 샷이라는 동일과정설의 견해를 기각시키는 것이며, 노아 홍수 동안에 퇴적됐던 퇴적지층의 상위 20~25%는 물러가는 홍수 물에 의해서 다시 제거되었다는 것을 시사하며, 남아있는 퇴적지층도 노아 홍수의 초기에서 중기에 퇴적됐던 것이라는 것을 의미한다. 이것은 동일과정설적 사고가 잠재의식에 깔려있어서, 노아 홍수를 연구할 때 방해가 되는, 또 하나의 사례가 되고 있는 것이다. 노아 홍수의 후반기는 주로 대륙에서 막대한 침식이 일어났던 시기였기 때문에, 엄청난 두께의 퇴적 지층들과 모든 화석들은 홍수의 전반기였던 범람기 동안에 쌓여지고 파묻혔던 것이다. 로이 홀트는 이렇게 말했다. ”이들 증거들이 제시하는 것처럼 노아 홍수의 주요 활동이 처음 150일 이내에 발생했다는 것은 믿을 수 없도록 놀라운 일이다.”[48]


Related Articles
Defining the Flood/post-Flood boundary in sedimentary rocks
Where is the Flood/post-Flood Boundary in the Rock Record?
Is the K/T the Post-Flood boundary?—part 1: introduction and the scale of sedimentary rocks
Evidence for a late Cainozoic Flood/post-Flood boundary
It’s plain to see
Visual evidence for Noah’s Flood
Evaluating potential post-Flood boundaries with biostratigraphy—the Pliocene/Pleistocene boundary
Raindrop imprints and the location of the pre-Flood/Flood boundary
Post-Flood boundary—a robust analysis flawed by hidden assumptions
Improving our understanding of creation and its history
Research needed to resolve questions with late Cenozoic post-Flood boundary
Reliable data disconfirm a late Cenozoic post-Flood boundary

Further Reading
Introduction to the Forum

References and notes
1.Reed, J.K. and Oard, M.J. (Eds.), The Geological Column: Perspectives within Diluvial Geology, Creation Research Society Books, Chino Valley, AZ, 2006.
2.Oard, M.J., Defining the Flood/post-Flood boundary in sedimentary rocks, J. Creation 21(1):98–110, 2007.
3.Oard, M.J., Geology indicates the terrestrial Flood/post-Flood boundary is mostly in the Late Cenozoic, J. Creation 27(1):119–127, 2013.
4.Oard, M.J., Flood by Design: Receding Water Shapes the Earth’s Surface, Master Books, Green Forest, AR.
5.Oard, M.J., The Missoula Flood Controversy and the Genesis Flood, Creation Research Society Monograph No. 13, Chino Valley, AZ, 2004.
6.Neuendorf, K.K.E., Mehl, Jr, J.P. and Jackson, J.A., Glossary of Geology, 5th Edition, American Geological Institute, Alexandria, VA, p. 28, 2005.
7.Rowley, P.D., Mehnert, H.H., Naeser, C.W., Snee, L.W., Cunningham, C.G., Stevens, T.A., Anderson, J.J., Sable, E.G. and Anderson, R.E., Isotopic ages and stratigraphy of Cenozoic rocks of the Maryvale Volcanic Field and adjacent areas, west-central Utah, U.S. Geological Survey Bulletin 2071, U.S. Government Printing Office, Washington, D.C., 1994.
8.Huuse, M., Shoulders, S.J., Netoff, D.I. and Cartwright, J., Giant sandstone pipes record basin-scale liquefaction of buried dune sands in the Middle Jurassic of SE Utah, Terra Nova 17, p. 81, 2005.
9.Oard, M.J. and Klevberg, P., The Green River Formation very likely did not form in a postdiluvial lake, Answers Research J. 1:99–108, 2008.
10.Schmidt, K.-H., The significance of scarp retreat for Cenozoic landform evolution on the Colorado Plateau, U.S.A., Earth Surface Processes and Landforms 14:93–105, 1989.
11.Pazzaglia, F.J. and Gardner, T.W., Late Cenozoic landscape evolution of the US Atlantic passive margin: insights into a North American Great Escarpment; in: Summerfield, M.A. (Ed.), Geomorphology and Global Tectonics, John Wiley & Sons, New York, p. 287, 2000.
12.Poag, C.W., U.S. middle Atlantic continental rise: provenance, dispersal, and deposition of Jurassic to Quaternary sediments; in: Poag, C.W. and P.C. de Graciansky (Eds.), Geological Evolution of Atlantic Continental Rises, Van Nostrand Reinhold, New York, pp. 100–156, 1992.
13.Oard, M.J., Origin of Appalachian Geomorphology Part I: erosion by retreating Floodwater, Creation Research Society Quarterly 48(1):33–48, 2011.
14.Hower, J.C. and Rimmer, S.M., Coal rank trends in the Central Appalachian coalfield: Virginia, West Virginia, and Kentucky, Organic Geochemistry 17(2):161–173, 1991.
15.Friedman, G.M. and Sanders, J.E., Time-temperature-burial significance of Devonian anthracite implies former great (~6.5 km) depth of burial of Catskill Mountains, New York, Geology 10:93–96, 1982.
16.Klitgord, K.D., Hutchinson, D.R. and Schouten, H., U.S. Atlantic continental margin; structural and tectonic framework; in: Sheridan, R.E. and Grow J.A. (Eds.), The Geology of North America, Volume I–2: The Atlantic Continental Margin: U.S., Geological Society of America, Boulder, CO, pp. 19–55, 1988.
17.Poag, C.W. and Valentine, P.C., Mesozoic and Cenozoic stratigraphy of the United States Atlantic continental shelf and slope; in: Sheridan, R.E. and Grow J.A. (Eds.), The Geology of North America, Volume I–2: The Atlantic Continental Margin: U.S., Geological Society of America, Boulder, CO, pp. 67–85, 1988.
18.Poag, C.W. and Sevon. W.D., A record of Appalachian denudation in post-rift Mesozoic and Cenozoic sedimentary deposits of the U.S. middle Atlantic continental margin, Geomorphology 2:119–157, 1999.
19.Poag and Seven, ref. 18, p. 119.
20.Oard, M.J., Devils Tower can be explained by floodwater runoff, J. Creation 23(2):124–127, 2009.
21.Twidale, C.R., Geomorphology, Thomas Nelson, Melbourne, Australia, pp. 164–165, 1968.
22.Pazzaglia, F.J., Landscape evolution models; in: Gillespie, A.R., Porter, S.C. and Atwater B.F. (Eds.), The Quaternary Period in the United States, Elsevier, New York, p. 249, 2004.
23.Robinson, C.S. and Davis, R.E., Geology of Devils Tower, Wyoming, Devils Tower Natural History Association, p. 36, 1995.
24.Crickmay, C.H., The Work of the River: A Critical Study of the Central Aspects of Geomorphology, American Elsevier Publishing Co., New York, p. 238, 1974.
25.Oard, M.J. and Klevberg, P., Deposits remaining from the Genesis Flood: Rim Gravels in Arizona, Creation Research Society Quarterly 42(1):1–17, 2005.
26.Bustin, R.M., Organic maturity in the western Canada sedimentary basin, International J. Coal Geology 19:319–358, 1991.
27.Osborn, G., Stockmal, G. and Haspel, R., Emergence of the Canadian Rockies and adjacent plains: a comparison of physiography between end-of-Laramide time and the present day, Geomorphology 75:450–477, 2006.
28.King, L.C., Wandering Continents and Spreading Sea Floors on an Expanding Earth, John Wiley and Sons, New York, pp. 197–214, 1983.
29.Pazzaglia, F.J. and Gardner, T.W., Late Cenozoic landscape evolution of the US Atlantic passive margin: insights into a North American Great Escarpment; in: Summerfield, M.A. (Ed.), Geomorphology and Global Tectonics, John Wiley & Sons, New York, pp. 283–302, 2000.
30.Galloway, R.W., Introduction; in: Davies, J.L. and Williams, M.A.J. (Eds.), Landform Evolution in Australasia, Australian National University Press, Canberra, Australia, pp. 1–4, 1978.
31.Chorley, R.J., Schumm, S.A. and Sugden, D.E., Geomorphology, Methuen, London, UK, p. 165, 1984.
32.Twidale, C.R. and Campbell, E.M., Australian Landforms: Understanding a Low, Flat, Arid and Old Landscape, Rosenberg Publishing, Dural Delivery Centre, New South Wales, Australia, p. 195, 2005.
33.Small, R.J., The Study of Landforms: A Textbook of Geomorphology, second edition, Cambridge University Press, London, U.K., p. 266, 1978.
34.Japsen, P., Regional Neogene exhumation of Britain and the western North Sea, J. Geological Society, London 154:239–247, 1997.
35.Jones, D.K.C., On the uplift and denudation of the Weald; in: Smith, B.J., Whalley, W.B. and Warke, P.A. (Eds.), Uplift, Erosion and Stability: Perspectives on Long-Term Landscape Development, Geological Society of London Special Publication No. 162, The Geological Society, London, UK, p. 32, 1999.
36.Partridge, T.C., Of diamonds, dinosaurs and diastrophism: 150 million years of landscape evolution in Southern Africa, African J. Geology 101(13):167–184, 1998.
37.Sugden, D. and Denton, G., Cenozoic landscape evolution of the Convoy Range of Mackay Glacier area, Transantarctic Mountains: onshore to offshore synthesis, GSA Bulletin 116(7/8):840–857, 2004.
38.Ollier, C. and Pain, C., The Origin of Mountains, Routledge, New York, 2000.
39.McMillan, M.E., Heller, P.L. and Wing, S.L., History and causes of post-Laramide relief in the Rocky Mountain orogenic plateau, GSA Bulletin 118(3/4):393–405, 2006.
40.Maddy, D., Uplift-driven valley incision and river terrace formation in southern England, J. Quaternary Science 12(6):539, 1997.
41.Walker, T., A Biblical geological model; in: Walsh, R.E. (Ed.), Proceedings of the Third International Conference on Creationism, technical symposium sessions, Creation Science Fellowship, Pittsburgh, PA, pp. 581–592, 1994.
42.Walker, M. and Lowe, J., Quaternary science 2007: a 50-year retrospective, J. Geological Society, London 164:1073–1092, 2207.
43.Oard, M.J., Frozen In Time: The Woolly Mammoth, the Ice Age, and the Biblical Key to Their Secrets, Master Books, Green Forest, AR, 2004.
44.Tyler, D.J., Recolonization and the Mabbul; in: Reed, J.K. and Oard, M.J. (Eds.), The Geological Column: Perspectives within Diluvial Geology, Creation Research Society Books, Chino Valley, AZ, pp. 73–88, 2006.
45.Reed, J.K., Kulikovsky, A.S. and Oard, M.J., Can recolonization explain the rock record? Creation Research Society Quarterly 46(1):27–39, 2009.
46.Holt, R.D., Evidence for a late Cainozoic Flood/post-Flood boundary, J. Creation 10(2):128–167, 1996.
47.Reed, J.K. and Oard, M.J., Three early arguments for deep time—part 3: the ‘geognostic pile’, J. Creation 26(2):100–109, 2012.
48.Holt, ref. 46, p. 162.

 

출처 : Journal of Creation 27(2):62–70, August 2013
URL : http://creation.com/flood-boundary-erosion
번역자 : 미디어위원회

관련 자료 링크:

1. 노아 홍수 후퇴기에 형성된 아시아 중남부의 판상 자갈층 : 홍수/홍수 후 경계는 신생대 후기일 가능성이 높다. (Retreating Stage formation of gravel sheets in south-central Asia)
2. 노아 홍수가 운반했던 막대한 량의 규암 자갈들 - Part 4 : 홍수 모델은 동일과정설적 수수께끼들을 쉽게 설명한다. (Flood transported quartzites: Part 4—diluvial interpretations)
3. 노아 홍수의 물은 대륙에서 어떻게 물러갔는가? (How did the waters of Noah’s Flood drain off the continents?)
4. 대륙에 발생되어 있는 대규모의 거대한 침식은 대홍수가 휩쓸고 간 증거이다. (Massive erosion of continents demonstrates Flood runoff)
5. 느리고 점진적인 침식은 없었다. 평탄하게 이어진 지층 경계면들은 장구한 시간 간격을 거부한다 : 창세기 홍수의 지질학적 증거들 5 (No Slow and Gradual Erosion)
6. 나바조 사암층의 출처로서 침식된 애팔래치아 산맥의 규산쇄설물 (Eroded Appalachian Mountain siliciclastics as a source for the Navajo Sandstone)
7. 전 지구적 홍수를 가리키는 아프리카의 평탄면 (new) : 동일과정설적 지형학이 결코 설명할 수 없는 모습 (The remarkable African Planation Surface)
8. 지형학은 노아 홍수의 풍부한 증거들을 제공한다. : 산, 평탄면, 도상구릉, 표석, 수극, 해저협곡의 기원 (Geomorphology provides multiple evidences for the global flood)
9. 창세기 홍수의 강력한 증거인 평탄한 지표면 (It’s plain to see : Flat land surfaces are strong evidence for the Genesis Flood)
10. 퇴적지층 사이의 ‘평탄한 간격’들은 진화론적 장구한 지질연대 개념에 도전한다. (‘Flat gaps’ in sedimentary rock layers challenge long geologic ages)
11. <리뷰> 침식되는 연대들 : 수십억 년의 대륙 연대와 모순되는 빠른 침식률 (Eroding Ages : If our continents were old, they would no longer be here.)
12. 절벽 붕괴와 장구한 연대라는 위험한 개념 : 침식은 오늘날에도 빠르게 일어나고 있다. (A dangerous view)
13. 격변적 사건들을 과소평가해왔던 지질학자들 : 한 번의 폭풍우가 수천 년에 해당하는 침식을 일으켰다. (Geologists Have Underestimated Catastrophes)
14. 호주의 글렌 헬렌 협곡은 어떻게 형성됐을까? : 전 세계의 수극들은 노아 홍수를 증거한다. (Glen Helen Gorge, Australia: How did it form?)
15. 그랜드 캐년이 노아의 홍수에 의해서 형성되었다고 보는 이유
16. 강이 산을 자르고 지나갈 수 있는가? : 노아 홍수의 후퇴하는 물로 파여진 수극들 (Do rivers erode through mountains? Water gaps are strong evidence for the Genesis Flood)
17. 그랜드 캐니언의 구불구불한 협곡은 노아 홍수를 부정하는가? : 후퇴하는 노아 홍수의 물로 설명되는 말굽협곡. (Horse Shoe Bend, Arizona Carved by the receding waters of Noah’s Flood)
18. 윌페나 파운드의 장엄한 지형 : 노아의 홍수 대격변은 이것을 어떻게 설명하는가? (The awesome wonder of Wilpena Pound, Australia. How the cataclysm of Noah’s Flood explains it.)
19. 큰 깊음의 샘들, 노아 홍수, 그리고 거대층연속체들 (Fountains of the Deep)
20. 중국의 계림, 카르스트 산들, 그리고 노아의 홍수 (Karst mountains, Guangxi, China, and Noah’s Flood)
21. 지구의 나이 논쟁에 있어서 열쇠 : 노아 홍수는 장구한 시간과 양립될 수 없다 (The Key to the Age of the Earth)
 
 
생명의 기원에 대한 자연발생설의 진화 : 최초의 생명체는 화산 온...
다윈의 실패 : 진화론과 모순되는 발견들은 계속되고 있다. (Darwi...
돌연변이 : 진화의 원료? (Mut...
하나의 특별한 우주 : 그 개념...
양자화 된 적색편이 값은 우리...
양자화 된 적색편이 값은 우리...
우주 모든 곳에 암흑물질을 가정...
방사성동위원소 '연대측정'의 모...
진화론의 확산과 지구 나이의 변...
성경에서 가장 중요한 구절 : ...
수십억 년의 연대를 받아들여서는...
아담과 이브의 혈액형은? (It's...
진화론을 비판하는 3,000 명의 ...
여리고의 성벽 : 고고학적 확...
생물의 진화적 기원이 불가능한 ...
다이아몬드 내의 방사성탄소는 수...

과학실험 큐티3
김형기 저

과학실험 큐티2
김형기 저

종교가 되어버린 진화라는 상상
정재훈 저

과학실험 큐티3
김형기 저

빅뱅과 5차원 우주창조론
권진혁 저

영화 속 진화론 바로잡기
교과서진화론개정추진회 저